Learn More
Corticotropin-releasing factor (CRF)- and urotensin I (UI)-expressing cells of the preoptic area (POA) and caudal neurosecretory system (CNSS) are considered key contributors to the regulation of the stress response in fish; however, the expression pattern of these neurons to environmental and social challenges have not been compared in a single study.(More)
To further our understanding of the development of the stress axis and the responsiveness of embryonic and larval fish to environmental stressors, this study examined the ontogeny of whole-body cortisol levels and of the corticotropin-releasing factor (CRF) system in rainbow trout, as well as the endocrine and cellular stress responses to hypoxia. After(More)
The corticotropin-releasing factor (CRF) system in fish functions to maintain homeostasis during stress in part by regulating cortisol production via the hypothalamus-pituitary-interrenal (HPI) axis. Towards understanding the role of the CRF system in vertebrate development, we describe the ontogeny of the CRF system, cortisol, and the stress response in(More)
Cortisol, the primary circulating corticosteroid in teleosts, is elevated during stress following activation of the hypothalamus-pituitary-interrenal (HPI) axis. Cortisol exerts genomic effects on target tissues in part by activating glucocorticoid receptors (GR). Despite a well-established negative feedback loop involved in plasma cortisol regulation, the(More)
Our current understanding of the corticotropin-releasing factor (CRF) system distribution in the teleost brain is restricted by limited immunohistochemical studies and a lack of complete transcriptional distribution maps. The present study used in situ hybridization to localize and compare CRF, urotensin I (UI), and CRF-binding protein (CRF-BP) expression(More)
The corticotrophin-releasing factor (CRF) system plays a key role in the co-ordination of the physiological response to stress in vertebrates. Although the binding protein (BP) for CRF-related peptides, CRF-BP, is an important player in the many functions of the CRF system, the distribution of CRF-BP and the impact of stressors on its expression in fish are(More)
Leptin is a potent anorexigen, but little is known about the physiological conditions under which this cytokine regulates food intake in fish. In this study, we characterized the relationships between food intake, O2-carrying capacity, liver leptin-A1 (lep-a1) gene expression, and plasma leptin-A1 in rainbow trout infected with a pathogenic hemoflagellate,(More)
Environmental factors that influence placental development are of particular interest because of the reported association between adult hypertension, low birthweight, and large placental size. Maternal anaemia is one environmental factor that is associated with an increase in placental size at birth. We have examined the relation between haematological(More)
In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to(More)
The type 2, 11β-hydroxysteroid dehydrogenase (Hsd11b2) converts active glucocorticoids to their inactive derivatives (e.g. cortisol to cortisone). In most vertebrates, Hsd11b2 is essential for conferring aldosterone-specific actions in mineralocorticoid target tissues and for protecting glucocorticoid-sensitive tissues during stress. However, teleosts do(More)