Learn More
Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional(More)
Hdac3 is essential for efficient DNA replication and DNA damage control. Deletion of Hdac3 impaired DNA repair and greatly reduced chromatin compaction and heterochromatin content. These defects corresponded to increases in histone H3K9,K14ac; H4K5ac; and H4K12ac in late S phase of the cell cycle, and histone deposition marks were retained in quiescent(More)
Heterozygous point mutations at Y641 and A677 in the EZH2 SET domain are prevalent in about 10-24% of Non-Hodgkin lymphomas (NHL). Previous studies indicate that these are gain-of-function mutations leading to the hypertrimethylation of H3K27. These EZH2 mutations may drive the proliferation of lymphoma and make EZH2 a molecular target for patients(More)
Patients with non-Hodgkin lymphoma (NHL) are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone). Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in(More)
The tumor suppressors BAP1 and ASXL1 interact to form a polycomb deubiquitinase complex that removes monoubiquitin from histone H2A lysine 119 (H2AK119Ub). However, BAP1 and ASXL1 are mutated in distinct cancer types, consistent with independent roles in regulating epigenetic state and malignant transformation. Here we demonstrate that Bap1 loss in mice(More)
The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2)(More)
Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for(More)
  • 1