Sarah Jurmeister

Learn More
MicroRNA-200c (miR-200c) has been shown to suppress epithelial-mesenchymal transition (EMT), which is attributed mainly to targeting of ZEB1/ZEB2, repressors of the cell-cell contact protein E-cadherin. Here we demonstrated that modulation of miR-200c in breast cancer cells regulates cell migration, cell elongation, and transforming growth factor β(More)
Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is(More)
In a malignant tumour, cancer cells are embedded in stromal cells, namely cancer-associated fibroblasts (CAFs). These CAFs are now accepted as important players in cancer dynamics, being involved in tumour growth and progression. Although there are various reports on the interaction between tumour and stromal cells, the clinico-pathological significance of(More)
Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT(More)
Metabolic alterations contribute to prostate cancer development and progression; however, the role of the central metabolic regulator AMP-activated protein kinase (AMPK) remains controversial. The androgen receptor (AR), a key driver of prostate cancer, regulates prostate cancer cell metabolism by driving the expression of a network of metabolic genes and(More)
Androgen receptor (AR) signaling remains an important regulatory pathway in castrate-resistant prostate cancer, and its transcriptional downregulation could provide a new line of therapy. A number of small-molecule ligands have previously demonstrated the ability to stabilize G-quadruplex structures and affect gene transcription for those genes whose(More)
Thank you for the submission of your manuscript to EMBO Molecular Medicine. We have now heard back from the three Reviewers whom we asked to evaluate your manuscript. You will see that while the Reviewers are globally supportive of your work, they express a number of concerns that prevent us from considering publication at this time. I will not dwell into(More)
  • 1