Sarah Jezzard

Learn More
Telomeres are specialized structures consisting of repeat arrays of TTAGGGn located at the ends of chromosomes. They are essential for chromosome stability and, in the majority of normal somatic cells, telomeres shorten with each cell division. Most immortalized cell lines and tumours reactivate telomerase to stabilize the shortening chromosomes. Telomerase(More)
The ability of bacteria to mediate gene transfer has only recently been established and these observations have led to the utilization of various bacterial strains in gene therapy. The types of bacteria used include attenuated strains of Salmonella, Shigella, Listeria, and Yersinia, as well as non-pathogenic Escherichia coli. For some of these vectors, the(More)
Human:rodent somatic cell hybrids carrying a single, intact, selectable human chromosome are valuable both for functional somatic cell genetic analysis and genome mapping procedures. Here, we describe the construction and detailed molecular cytogenetic characterization of a panel of 23 stable hybrids, representing all 22 human autosomes plus the(More)
The fundamental hypotheses behind fetal gene therapy are that it may be possible (1) to achieve immune tolerance of transgene product and, perhaps, vector; (2) to target cells and tissues that are inaccessible in adult life; (3) to transduce a high percentage of rapidly proliferating cells, and in particular stem cells, with relatively low absolute virus(More)
An invasive Escherichia coli expressing the inv gene from Yersinia pseudotuberculosis was used as a vector for protein delivery to mammalian epithelial cells. Upon incubation with beta1-integrin-expressing mammalian cells, the bacteria are internalized, allowing bacteria-encoded proteins to function from within the mammalian cell. These bacteria are(More)
Targeted gene expression can be achieved through the use of cell-selective promoters. However, when the expression cassette is delivered by an adenovirus, "promoter interference," resulting in the loss of specificity, has been reported. To overcome this problem, insulator elements (the bovine growth hormone transcription stop signal or HS4 chromatin(More)
Microcell transfer of intact normal human chromosomes into immortal mouse and hamster fibroblast cell lines has revealed growth suppressive activity associated with a small sub-set of the human complement. Here, we describe the results of a detailed study aimed at identifying the gene or genes responsible for the rapid growth-arrest response obtained with(More)
We have investigated the use of polycations to increase adenovirus-mediated expression of transgenic protein to the biliary epithelia with a view to gene therapy for hepatobiliary disease in CF. We have shown that adenovirus carrying the beta-galactosidase transgene transfect both human and mouse biliary epithelia in primary culture and that in both(More)
Constitutive activation of the Wnt signaling pathway is a hallmark of many cancers, including familial adenomatous polyposis (FAP)-related desmoid tumors. Endostatin is a well-known antiangiogenic protein that has been described recently as a potential inhibitor of this signaling pathway. Here, we show that endostatin directly induces apoptosis and inhibits(More)
In utero somatic gene therapy in the later stages of pregnancy may allow targeting of organ systems which are difficult to reach later in life and to prevent the development of tissue damage otherwise caused by the early onset of inherited diseases. We report here on the percutaneous delivery of two adenoviral vectors, containing the beta-galactosidase(More)