Sarah J. Liljegren

Learn More
The fruit, which mediates the maturation and dispersal of seeds, is a complex structure unique to flowering plants. Seed dispersal in plants such as Arabidopsis occurs by a process called fruit dehiscence, or pod shatter. Few studies have focused on identifying genes that regulate this process, in spite of the agronomic value of controlling seed dispersal(More)
Carpels are essential for sexual plant reproduction because they house the ovules and subsequently develop into fruits that protect, nourish and ultimately disperse the seeds. The AGAMOUS (AG) gene is necessary for plant sexual reproduction because stamens and carpels are absent from ag mutant flowers. However, the fact that sepals are converted into(More)
Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that(More)
Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts(More)
The terminal step of fruit development in Arabidopsis involves valve separation from the replum, allowing seed dispersal. This process requires the activities of the SHATTERPROOF MADS-box genes, which promote dehiscence zone differentiation at the valve/replum boundary. Here we show that the FRUITFULL MADS-box gene, which is necessary for fruit valve(More)
MADS-box genes encode transcriptional regulators involved in diverse aspects of plant development. Here we describe the cloning and mRNA spatio-temporal expression patterns of five new MADS-box genes from Arabidopsis: AGL16, AGL18, AGL19, AGL27 and AGL31. These genes will probably become important molecular tools for both evolutionary and functional(More)
The Arabidopsis seedpod opens through a spring-loaded mechanism known as pod shatter, which is essential for dispersal of the seeds. Here, we identify INDEHISCENT (IND), an atypical bHLH protein, that is necessary for fruit opening and is involved in patterning each of the three fruit cell types required for seed dispersal. Previous studies suggested that(More)
Local hormone maxima are essential for the development of multicellular structures and organs. For example, steroid hormones accumulate in specific cell types of the animal fetus to induce sexual differentiation and concentration peaks of the plant hormone auxin direct organ initiation and mediate tissue patterning. Here we provide an example of a regulated(More)
During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three(More)