Sarah G. R. Devriese

Learn More
BACKGROUND AND AIMS Butyricicoccus is a butyrate-producing clostridial cluster IV genus whose numbers are reduced in the stool of ulcerative colitis [UC] patients. Conditioned medium of Butyricicoccus [B.] pullicaecorum prevents tumour necrosis factor alpha [TNFα]-induced increase in epithelial permeability in vitro. Since butyrate influences intestinal(More)
The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays(More)
BACKGROUND Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFβ1-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side-effects, we evaluated the effects of a locally acting ROCK inhibitor(More)
Colonic adenocarcinoma-derived Caco-2 and T84 epithelial cell lines are frequently used as in vitro model systems of functional epithelial barriers. Both are utilised interchangeably despite evidence that differentiated Caco-2 cells are more reminiscent of small intestinal enterocytes than of colonocytes, whereas differentiated T84 cells are less well(More)
We present an algorithm for enhancing magnetic data in UXO applications using a stable downward continuation method. The algorithm formulates the downward continuation as an inverse problem using Tikhonov regularization and has the flexibility of incorporating the expected power spectrum of UXO anomalies. The degree of regularization is estimated(More)
Prolyl hydroxylase domain-containing proteins (PHDs) regulate the adaptation of cells to hypoxia. Pan-hydroxylase inhibition is protective in experimental colitis, in which PHD1 plays a prominent role. However, it is currently unknown how PHD1 targeting regulates this protection and which cell type(s) are involved. Here, we demonstrated that Phd1 deletion(More)
Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective(More)
  • 1