Sarah B. England

Learn More
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with(More)
To examine the molecular organization of DNA sequences located in the centromeric region of human chromosome 16 we have isolated and characterized a chromosome 16-specific member of the alpha satellite DNA family. The probe obtained is specific for the centromere of chromosome 16 by somatic cell hybrid analysis and by fluorescence in situ hybridization and(More)
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), a much milder form of the disease where the age of onset can sometimes be as late as the third or fourth decade of life, are caused by mutations in the same X-linked gene, a 14 kilobase (kb) transcript which is spread over more than 2 megabases of the human X chromosome. The(More)
We describe a general strategy for the detection of high-frequency restriction fragment length polymorphisms in the centromeric regions of human chromosomes by molecular analysis of alpha satellite DNA, a diverse family of tandemly repeated DNA located near the centromeres of all human chromosomes. To illustrate this strategy, cloned alpha satellite repeats(More)
The Duchenne muscular dystrophy locus is remarkable in that it shows a high mutation rate and the majority of mutations found are deletions. These deletions are generated as meiotic as well as mitotic events and occur preferentially in the central region of the gene. Nothing is known so far about the mechanisms involved. This paper reports the first(More)
The analysis of DNA from patients suffering from Duchenne (DMD) and Becker (BMD) muscular distrophies has resulted in the identification of a single gene locus for these diseases. The locus is deleted to varying extents in affected patients. The translation product of this locus has been implicated as the site of the primary biochemical defect responsible(More)
It is now possible to map almost any disease locus to a chromosomal region in the human genome by family studies with restriction fragment length polymorphisms. Duchenne and Becker muscular dystrophies have been shown to be localized within the same small region of Xp21 on the human X chromosome. Myotonic dystrophy has been localized to a region close to(More)