Sarah A Richman

Learn More
Transduction of exogenous T-cell receptor (TCR) genes into patients’ activated peripheral blood T cells is a potent strategy to generate large numbers of specific T cells for adoptive therapy of cancer and viral diseases. However, the remarkable clinical promise of this powerful approach is still being overshadowed by a serious potential consequence:(More)
Many of the most promising tumor antigens for T-cell-based cancer immunotherapies are unmodified self-antigens. Unfortunately, the avidity of T cells specific for these antigens is limited by central tolerance during T-cell development in the thymus, resulting in decreased anti-tumor efficacy of these T cells. One approach to overcoming this obstacle is to(More)
The variable (V) domains of antibodies and T cell receptors (TCRs) share sequence homology and striking structural similarity. Single-chain antibody V domain constructs (scFv) are routinely expressed in a variety of heterologous systems, both for production of soluble protein as well as for in vitro engineering. In contrast, single-chain T cell receptor V(More)
The use of T cell receptors (TCRs) as potential therapeutic agents provides an opportunity to target a greatly expanded array of antigens, compared to those now targeted with monoclonal antibodies. With the advent of new display technologies and TCR formats for in vitro engineering, it should be possible to generate high-affinity TCRs against virtually any(More)
Over the past two decades, the field of biosensors has been developing fast, portable, and convenient detection tools for various molecules of interest, both biological and environmental. Although much attention is paid to the transduction portion of the sensor, the actual bioreceptor that binds the ligand is equally critical. Tight, specific binding by the(More)
Yeast display provides a system for engineering high-affinity proteins using a fluorescent-labeled ligand and fluorescence-activated cell sorting (FACS). In cases where it is difficult to obtain purified ligands, or to access FACS instrumentation, an alternative selection strategy would be useful. Here we show that yeast expressing high-affinity proteins(More)
  • 1