Learn More
BACKGROUND Ventricular expression of phosphodiesterase-5 (PDE5), an enzyme responsible for cGMP catabolism, is increased in human right ventricular hypertrophy, but its role in left ventricular (LV) failure remains incompletely understood. We therefore measured LV PDE5 expression in patients with advanced systolic heart failure and characterized LV(More)
BACKGROUND Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. METHODS AND RESULTS Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for(More)
Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that the variant rs5068 (A/G) in the 3' untranslated region of NPPA, the gene encoding atrial natriuretic peptide (ANP), is associated with blood pressure. We selected individuals on the basis of rs5068(More)
BACKGROUND The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse(More)
Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female(More)
E ndothelial cells (ECs) lining capillaries of different organs have specialized gene expression patterns, morphologies , and functions related to the specific needs of tissue parenchymal cells with which they communicate. 1 This heterogeneity is determined by environmental cues and intrinsic regulators (eg, transcription factors or TFs), which remain(More)
  • 1