Sara Nuovo

  • Citations Per Year
Learn More
OBJECTIVE Blepharophimosis syndrome (BPES) is an autosomal dominant genetic condition resulting from heterozygous mutations in the FOXL2 gene and clinically characterized by an eyelid malformation associated (type I) or not (type II) with premature ovarian failure. The distinction between the two forms is critical for female patients, as it may allow to(More)
One set of missense mutations in the neuron specific beta tubulin isotype 3 (TUBB3) has been reported to cause malformations of cortical development (MCD), while a second set has been reported to cause isolated or syndromic Congenital Fibrosis of the Extraocular Muscles type 3 (CFEOM3). Because TUBB3 mutations reported to cause CFEOM had not been associated(More)
To determine the neuroimaging pattern of cerebellar dysplasia (CD) and other posterior fossa morphological anomalies associated with mutations in tubulin genes and to perform clinical and genetic correlations. Twenty-eight patients harbouring 23 heterozygous pathogenic variants (ten novel) in tubulin genes TUBA1A (n = 10), TUBB2B (n = 8) or TUBB3 (n = 5)(More)
Romina Romaniello & Filippo Arrigoni & Elena Panzeri & Andrea Poretti & Alessia Micalizzi & Andrea Citterio & Maria Francesca Bedeschi & Angela Berardinelli & Raffaella Cusmai & Stefano D’Arrigo & Alessandro Ferraris & Annette Hackenberg & Alma Kuechler & Margherita Mancardi & Sara Nuovo & Barbara Oehl-Jaschkowitz & Andrea Rossi & Sabrina Signorini & Frank(More)
INTRODUCTION Myotonia Congenita (MC) is a nondystrophic skeletal muscle disease characterized by muscle stiffness, weakness, delayed skeletal relaxation and hypertrophic muscle. The disease can be inherited as dominant or recessive. More than 130 mutations in CLCN1 gene have been identified. MATERIALS AND METHODS We analyzed the entire coding region and(More)
The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH(More)
  • 1