Sara N Richter

Learn More
The cis-acting mRNA elements that promote programmed -1 ribosomal frameshifting present a natural target for the rational design of antiretroviral chemotherapies. It has been commonly accepted that the HIV-1 frameshifting signal is special, because its downstream enhancer element consists of a simple mRNA stem loop rather than a more complex secondary(More)
Clerocidin, a diterpenoid with antibacterial and antitumor activity, stimulates in vitro DNA cleavage mediated by mammalian and bacterial topoisomerase (topo) II. Different from the classical topoisomerase poisons, clerocidin-stimulated breaks at guanines immediately preceding the sites of DNA cleavage are not resealed upon heat or salt treatment. To(More)
Clerocidin (CL) is an effective topoisomerase II-poison, which has been shown to produce DNA depurination and strand breaks per se at the guanine (G) level. To elucidate the roles played by the different functional groups of CL in the reactivity towards nucleic acids, we investigated CL derivatives with key structural modifications. The derivatives were(More)
Clerocidin (CL), a diterpenoid natural product, alkylates DNA through its epoxide moiety and exhibits both anticancer and antibacterial activities. We have examined CL action in the presence of topoisomerase IV from Streptococcus pneumoniae. CL promoted irreversible enzyme-mediated DNA cleavage leading to single- and double-stranded DNA breaks at specific(More)
G-Quadruplexes, noncanonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts, and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to(More)
Guanine-rich nucleic acids can fold into G-quadruplexes, secondary structures implicated in important regulatory functions at the genomic level in humans, prokaryotes and viruses. The remarkably high guanine content of the Herpes Simplex Virus-1 (HSV-1) genome prompted us to investigate both the presence of G-quadruplex forming sequences in the viral genome(More)
Replication of human immunodeficiency virus requires Tat protein which activates elongation of RNA polymerase II transcription at the HIV-1 promoter through interaction with the cyclin T1 (CycT1) subunit of the positive transcription elongation factor complex (P-TEFb). Tat binds directly through its transactivation domain to the CycT1 subunit of the P-TEFb(More)
Quinolones represent an important class of broad-spectrum antibacterials, the main structural features of which are a 1,4 dihydro-4-oxo-quinolinyl moiety bearing an essential carboxyl group at position 3. Quinolones inhibit prokaryotic type II topoisomerases, namely DNA gyrase and, in a few cases, topoisomerase IV, through direct binding to the bacterial(More)
The spread of aac(6')-Ib-cr plasmid-mediated quinolone resistance determinants was evaluated in 197 enterobacterial isolates recovered in an Italian teaching hospital. The aac(6')-Ib-cr gene was found exclusively in Escherichia coli strains. The gene was located on a plasmid which presented additional ESBL genes. Most of the clinical strains were clonally(More)
BACKGROUND While combination of gemcitabine with anti-topoisomerase poisons is routinely used in oncology, little is known on the biological interactions between these drugs. DESIGN To understand the cellular basis for this association, we hypothesized an interaction of the two agents at the topoisomerase level. A real-time RT-PCR method was designed to(More)