Sara Martire

Learn More
DNA damage is the prime activator of the enzyme poly(ADP-ribose)polymerase1 (PARP-1) whose overactivation has been proven to be associated with the pathogenesis of numerous central nervous system disorders, such as ischemia, neuroinflammation, and neurodegenerative diseases. Under oxidative stress conditions PARP-1 activity increases, leading to an(More)
Amyloid beta peptide (Aβ) causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose) polymerase (PARP-1). To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or(More)
All cerebellar GABAergic interneurons were derived from a common pool of precursor cells residing in the embryonic ventricular zone (VZ) and migrating in the prospective white matter (PWM) after birth, where both intrinsic and extrinsic factors contribute to regulate their amplification. Among the environmental factors, we focused on Sonic hedgehog (Shh), a(More)
Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a(More)
β-Sheet aggregates and amyloid fibrils rising from conformational changes of proteins are observed in several pathological human conditions. These structures are organized in β-strands that can reciprocally interact by hydrophobic and π-π interactions. The amyloid aggregates can give rise to pathological conditions through complex biochemical mechanisms(More)
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is still unclear in spite of extensive investigations. It has been hypothesized that 5-S-cysteinyldopamine (CysDA), a catechol-thioether metabolite of dopamine (DA), could be an endogenous parkinsonian neurotoxin. To gain further insight into its role in the(More)
In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes. A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood(More)
Stem cells use poised enhancers of developmental regulators to maintain pluripotency and for subsequent activation in differentiating progeny. In this issue of Developmental Cell, Janssens et al. (2017) demonstrate that the erm enhancer is maintained in a poised state in neural stem cells by the histone deacetylase Hdac1/Rpd3.
  • 1