Learn More
The tissue polarity mutants in Drosophila include a set of conserved gene products that appear to be involved in the control of cytoskeletal architecture. Here we show that the tissue polarity gene prickle (pk) encodes a protein with a triple LIM domain and a novel domain that is present in human, murine, and Caenorhabditis elegans homologs which we(More)
The tissue polarity genes control the polarity of hairs, bristles and ommatidia in the adult epidermis of Drosophila. We report here the identification of a new tissue polarity gene named starry night (stan). Mutations in this essential gene alter the polarity of cuticular structures in all regions of the adult body. The detailed polarity phenotype of stan(More)
The tissue polarity gene fuzzy (fy) has two roles in the development of Drosophila wing hairs. One is to specify the correct orientation of the hair by limiting the site of prehair initiation to the distal vertex of the wing cell. The other is to control wing cell hair number by maintaining the integrity of the cytoskeletal components that direct hair(More)
Results of a ground-based optical monitoring campaign on 3C 390.3 in 1994–95 are presented. The broad-band fluxes (B, V , R, and I), the spectrophotometric optical continuum flux F λ (5177Å), and the integrated emission-line fluxes of Hα, Hβ, Hγ, He i λ5876, and He ii λ4686 all show a nearly monotonic increase with episodes of milder short-term variations(More)
Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity.(More)
Zinc is an essential trace element involved in many biological processes and human diseases. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. Here, we demonstrate that lysosome-related organelles in intestinal cells of C. elegans, called gut granules,(More)
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes(More)
Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion(More)
The CRM1 (Exportin 1) protein is a receptor for leucine-rich nuclear export signal sequences. We have molecularly characterized the Drosophila melanogaster embargoed (emb) gene and find that it encodes a product with 49 and 71% sequence identity to the fission yeast Schizosaccharomyces pombe and human CRM1 proteins, respectively. We show that expression of(More)
Rhabdomyolysis is an acute syndrome due to extensive injury of skeletal muscle. Recurrent rhabdomyolysis is often caused by inborn errors in intermediary metabolism, and recent work has suggested that mutations in the human gene encoding lipin 1 (LPIN1) may be a common cause of recurrent rhabdomyolysis in children. Lipin 1 dephosphorylates phosphatidic acid(More)
  • 1