Learn More
The precise nature of information flow through a biological network, which is governed by factors such as response sensitivities and noise propagation, greatly affects the operation of biological systems. Quantitative analysis of these properties is often difficult in naturally occurring systems but can be greatly facilitated by studying simple synthetic(More)
This paper analyzes how the delay and repression strength of negative feedback in single-gene and multigene transcriptional networks influences intrinsic noise propagation and oscillatory behavior. We simulate a variety of transcriptional networks using a stochastic model and report two main findings. First, intrinsic noise is not attenuated by the addition(More)
Artificial genetic circuits are becoming important tools for controlling cellular behavior and studying molecular biosystems. To genetically optimize the properties of complex circuits in a practically feasible fashion, it is necessary to identify the best genes and/or their regulatory components as mutation targets to avoid the mutation experiments being(More)
Cell-cell communication and coordinated population-based behavior among single cell organisms have gained considerable attention in the recent years. The ability to send, receive, and process information allows unicellular organisms to act as multicellular entities and increases their chances of survival in complex environments. Quorum sensing (QS), a(More)
In this paper, we review an emerging engineering discipline to program cell behaviors by embedding synthetic gene networks that perform computation, communications, and signal processing. To accomplish this goal, we begin with a genetic component library and a biocircuit design methodology for assembling these components into compound circuits. The main(More)
Quorum sensing (QS) enables an individual bacterium's metabolic state to be communicated to and ultimately control the phenotype of an emerging population. Harnessing the hierarchical nature of this signal transduction process may enable the exploitation of individual cell characteristics to direct or "program" entire populations of cells. We re-engineered(More)
Quorum sensing (QS) enables bacterial multicellularity and selective advantage for communicating populations. While genetic "switching" phenomena are a common feature, their mechanistic underpinnings have remained elusive. The interplay between circuit components and their regulation are intertwined and embedded. Observable phenotypes are complex and(More)
  • S. Hooshangi
  • 2013
The future of the energy industry has become the centerpiece of many technical, social and political debates in recent years and yet there is no comprehensive plan to include energy as a core requirement in undergraduate STEM programs. Since the current and future state of the energy industry has a direct effect on the daily lives of individuals, we believe(More)