Learn More
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report(More)
Yersinia enterocolitica employs a type III secretion system (TTSS) to target virulence factors (e.g. YopE) into the cytosol of the host cells. We utilized the TTSS to introduce a recombinant antigen directly into the cytosol of host cells and to investigate the potential of Y. enterocolitica and Y. pseudotuberculosis as live carrier for vaccines. The model(More)
In 2009, four bathing sites in The Netherlands were monitored for potentially human pathogenic Vibrio species to observe possible associations with environmental conditions and health complaints. Three slightly different enrichment procedures were used to isolate Vibrio species with different growth requirements. Waters were generally positive for Vibrio(More)
Recently, a number of attenuated mutants of Yersinia pseudotuberculosis have been identified using a bioinformatics approach. One of the target genes identified in that study was vagH, which the authors now characterized further. VagH shows homology to HemK of Escherichia coli, possessing methyltransferase activity similar to that of HemK, and targeting(More)
Experimental oral infections of rabbits with a wild-type Yersinia pseudotuberculosis strain (pIB102), and two null-mutants (yopK and ypkA) were carried out with the aim to explore the possibility to use mutant strains of Y. pseudotuberculosis as live carrier vaccine strains. The infectious process of the three strains proceed with passing hyperthermia,(More)
Yersinia pseudotuberculosis employs a type III secretion system for targeting of several virulence factors directly to the cytosol of eukaryotic cells. This protein translocation mechanism mediates the ability of Yersinia to resist phagocytosis and is required for sustained extracellular bacterial replication. In the present study, the Yersinia outer(More)
Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We(More)
Experimental oral infection of pigs with a parental Yersinia pseudotuberculosis strain pIB102, serotype O:3 and two mutant isogenic strains - pIB155,DeltayopK and pIB44,DeltaypkA has been carried out. Clinical findings, microbiological and immunological parameters were examined in dynamics from day 7 to day 60 post-infection (p.i.). All types of infections(More)
The sequencing of bacterial genomes has opened new perspectives for identification of targets for treatment of infectious diseases. We have identified a set of novel virulence-associated genes (vag genes) by comparing the genome sequences of six human pathogens that are known to cause persistent or chronic infections in humans: Yersinia pestis, Neisseria(More)
  • 1