Sara Faridi

Learn More
We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in(More)
Given a simple graph G on n vertices, we prove that it is possible to reconstruct several algebraic properties of the edge ideal from the deck of G, that is, from the collection of subgraphs obtained by removing a vertex from G. These properties include the Krull dimension, the Hilbert function, and all the graded Betti numbers i,j where j < n. We also(More)
  • 1