#### Filter Results:

#### Publication Year

2005

2015

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

In this paper we study simplicial complexes as higher dimensional graphs in order to produce algebraic statements about their facet ideals. We introduce a large class of square-free monomial ideals with Cohen-Macaulay quotients, and a criterion for the Cohen-Macaulayness of facet ideals of simplicial trees. Along the way, we generalize several concepts from… (More)

We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in… (More)

Given a simple graph G on n vertices, we prove that it is possible to reconstruct several algebraic properties of the edge ideal from the deck of G, that is, from the collection of subgraphs obtained by removing a vertex from G. These properties include the Krull dimension, the Hilbert function, and all the graded Betti numbers i,j where j < n. We also… (More)

In this paper we give a necessary and sufficient combinatorial condition for a monomial ideal to have a linear resolution over fields of characteristic 2.

We detail here the sparse variant of the algorithm sketched in [2] for checking if a simplicial complex is a tree. A full worst case complexity analysis is given and several optimizations are discussed. The practical complexity is discussed for some examples.

- ‹
- 1
- ›