Learn More
G-protein-coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. Although significant advances have been made in structural studies of GPCRs, details of their activation mechanism remain unclear. The X-ray crystal structure of the M2 muscarinic(More)
BACKGROUND Detecting prostate cancer before spreading or predicting a favorable therapy are challenging issues for impacting patient's survival. Presently, 2-[(18) F]-fluoro-2-deoxy-D-glucose ((18) F-FDG) and/or (18) F-fluorocholine ((18) F-FCH) are the generally used PET-tracers in oncology yet do not emphasize the T877A androgen receptor (AR) mutation(More)
Molecular dynamics (MD) simulation is a well-established method for understanding protein dynamics. Conformations from unrestrained MD simulations have yet to be assessed for blind virtual screening (VS) by docking. This study presents a critical analysis of the predictive power of MD snapshots to this regard, evaluating two well-characterized systems of(More)
MAMMALS, as a rule, are described as having melanocytes of neural crest origin confined almost entirely to the skin. Of the organs other than skin which have been described as possessing melanocytes are portions of the gonado-genital apparatus of the Opossum (Burns, 1939), and, in the house mouse, tissues of the nictitans, the meninges of the brain, the(More)
Although the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this context,(More)
To discover non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) that are effective against both wild-type (WT) virus and variants that encode the clinically troublesome Tyr181Cys (Y181C) RT mutation, virtual screening by docking was carried out using three RT structures and more than 2 million commercially available compounds. Two of the(More)
Receptors are inherently dynamic and this flexibility is important to consider when constructing a model of molecular association. Conformations from molecular dynamics simulations, a well-established method for examining protein dynamics, can be used in virtual screening to account for flexibility in structure-based drug discovery. Different receptor(More)
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in folate biosynthesis and a major malarial drug target. This bifunctional enzyme thus presents different design approaches for developing novel inhibitors against drug-resistant mutants. We performed a high-throughput in silico screen of a database of(More)
Crystallographic structures and experimental assays of human CXC chemokine receptor type 4 (CXCR4) provide strong evidence for the capacity to homodimerize, potentially as a means of allosteric regulation. Even so, how this homodimer forms and its biological significance has yet to be fully characterized. By applying principles from network analysis,(More)
An alchemical free energy method with explicit solvent molecular dynamics simulations was applied as part of the blind prediction contest SAMPL3 to calculate binding free energies for seven guests to an acyclic cucurbit-[n]uril host. The predictions included determination of protonation states for both host and guests, docking pose generation, and binding(More)