Sara E. Hester

Learn More
Type VI Secretion Systems (T6SSs) have been identified in numerous gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that(More)
Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus(More)
The classical bordetellae are comprised of three subspecies that differ from broad to very limited host specificity. Although several lineages appear to have specialized to particular host species, most retain the ability to colonize and grow in mice, providing a powerful common experimental model to study their differences. One of the subspecies,(More)
Sensing the environment allows pathogenic bacteria to coordinately regulate gene expression to maximize survival within or outside of a host. Here we show that Bordetella species regulate virulence factor expression in response to carbon dioxide levels that mimic in vivo conditions within the respiratory tract. We found strains of Bordetella bronchiseptica(More)
The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of(More)
  • 1