Sara Dossena

Learn More
A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor(More)
Transgenic Tg(PG14) mice express a mutant prion protein containing 14 octapeptide repeats, whose human homologue is associated with an inherited prion dementia. These mice develop a progressive neurological disorder characterized by ataxia and cerebellar atrophy, with massive apoptotic degeneration of granule neurons. Bax, a proapoptotic gene of the Bcl-2(More)
Inherited prion diseases are linked to mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. It has been proposed that neuronal death can be triggered by accumulation of PrP in the cytosol because(More)
The many different functional phenotypes described in mammalian cells can only be explained by an intense interaction of the underlying proteins, substantiated by the fact that the number of independently expressed proteins in living cells seems not to exceed 25 K, a number way too small to explain the >250 K different phenotypes on a(More)
The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate(More)
Inherited prion diseases are linked to insertional and point mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. Transgenic (Tg) (PG14) mice express a mouse PrP homolog of a nine-octapeptide(More)
Signaling through the interleukin-4/interleukin-13 (IL-4/IL-13) receptor complex is a crucial mechanism in the development of bronchial asthma and chronic obstructive pulmonary disease (COPD). In bronchial epithelial cells, this signaling pathway leads to changes in the expression levels of several genes that are possibly involved in protection against(More)
  • 1