Learn More
We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter,(More)
Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis(More)
Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss(More)
The amyloid-β protein precursor (AβPP) binds several proteins determining metabolism, processing, and the physiological fate of the former. Among these is Fe65, a protein with specific functional significance for AβPP, in particular conferring stability when the latter is dephosphorylated on Thr668. Thus, it follows that phosphatases like protein(More)
Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be(More)
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in(More)
Cellular protein phosphorylation regulates proteolytic processing of the Alzheimer's Amyloid Precursor Protein (APP). This appears to occur both indirectly and directly via APP phosphorylation at residues within cytoplasmic motifs related to targeting and protein-protein interactions. The sorting signal (653)YTSI(656) comprises the S655 residue that can be(More)
Altered metabolism of the Alzheimer's amyloid precursor protein (APP) appears to be a key event in the pathogenesis of Alzheimer's disease (AD), and both altered phosphorylation and oxidative stress appear to affect the production of the toxic Abeta fragment. Our results show that altered processing of APP was observed under conditions of stress induced by(More)
One of the most important contributions to our understanding of neurodegenerative diseases in the last decade has been the demonstration that several disorders have a common biochemical cause, involving aggregation and deposition of abnormal proteins. Abnormal protein deposition leads to neuronal degeneration with consequences to impaired brain function.(More)
Alzheimer's amyloid-beta protein precursor (AbetaPP) can occur in different isoforms, among them AbetaPP(751), which is the most abundant isoform in non-neuronal tissues, and AbetaPP(695), often referred to as the neuronal isoform. However, few isoform-specific roles have been addressed. In the work here described, AbetaPP isoforms, both endogenous and as(More)