Sara Colombetti

Learn More
High mobility group box 1 (HMGB1) is an abundant chromatin protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Here, we show that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts),(More)
Proliferation of Ag-specific T cells is central to the development of protective immunity. The concomitant stimulation of the TCR and CD28 programs resting T cells to IL-2-driven clonal expansion. We report that a prolonged occupancy of the TCR and CD28 bypasses the need for autocrine IL-2 secretion and sustains IL-2-independent lymphocyte proliferation. In(More)
The success of active cancer immunotherapy entails a robust induction of tumor-reactive effector and memory CD8+ T cells. We compared the in vivo immunogenicity of the melanoma-associated antigen Melan-A(26-35) encoded by third-generation recombinant lentivector (rec. lv) or as peptide admixed with a strong adjuvant. Ex vivo analyses of immunized(More)
We describe the cloning, expression pattern and functional overexpression analysis of Xotx5b, a new member of the Otx gene family in Xenopus laevis. Early expression of Xotx5b resembles that of Xotx2, being detected in the organizer region at early gastrula stage, and, shortly after, also in anterior neuroectoderm. During neurula stages Xotx5b exhibits a(More)
Expression of the cancer/germ-line antigen NY-ESO-1 by tumors elicits spontaneous humoral and cellular immune responses in some cancer patients. Development of vaccines capable of stimulating such comprehensive immune responses is desirable. We have produced recombinant lentivectors directing the intracellular synthesis of NY-ESO-1 (rLV/ESO) and have(More)
Ag encounter in the absence of proliferation results in the establishment of T cell unresponsiveness, also known as T cell clonal anergy. Anergic T cells fail to proliferate upon restimulation because of the inability to produce IL-2 and to properly regulate the G(1) cell cycle checkpoint. Because optimal TCR and CD28 engagement can elicit IL-2-independent(More)
Chronic engagement of the T cell receptor mediates the induction of T lymphocyte unresponsiveness called clonal anergy. The development of such unresponsiveness has been suggested as one of the mechanisms that regulate peripheral tolerance to self-antigens and hamper the capacity of tumor antigen-specific T cells to eliminate cancerous cells. In the attempt(More)
Immunization with recombinant lentivector elicits higher frequencies of tumor antigen-specific memory CD8+ T cells than peptide-based vaccines. This finding correlates with our observation that, upon recombinant lentivector immunization, a higher fraction of antigen-specific effector CD8+ T cells does not down-regulate the expression of the survival/memory(More)
The mammalian target of rapamycin (mTOR) controls T-cell differentiation in response to polarizing cytokines. We previously found that mTOR blockade by rapamycin (RAPA) delays the G1-S cell cycle transition and lymphocyte proliferation. Here, we report that both mTOR complex 1 and mTOR complex 2 are readily activated following TCR/CD28 engagement and are(More)
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However,(More)