Sara C. Madeira

Learn More
A large number of clustering approaches have been proposed for the analysis of gene expression data obtained from microarray experiments. However, the results from the application of standard clustering methods to genes are limited. This limitation is imposed by the existence of a number of experimental conditions where the activity of genes is(More)
Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms),(More)
The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT) information system (http://www.yeastract.com) was developed to support the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2010, this database contains over 48,200 regulatory associations between transcription factors (TFs)(More)
The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200,000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs.(More)
PINTA (available at http://www.esat.kuleuven.be/pinta/; this web site is free and open to all users and there is no login requirement) is a web resource for the prioritization of candidate genes based on the differential expression of their neighborhood in a genome-wide protein-protein interaction network. Our strategy is meant for biological and medical(More)
The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling(More)
Although most biclustering formulations are NP-hard, in time series expression data analysis, it is reasonable to restrict the problem to the identification of maximal biclusters with contiguous columns, which correspond to coherent expression patterns shared by a group of genes in consecutive time points. This restriction leads to a tractable problem. We(More)
The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool(More)
Biclustering, the discovery of sets of objects with a coherent pattern across a subset of conditions, is a critical task to study a wide-set of biomedical problems, where molecular units or patients are meaningfully related with a set of properties. The challenging combinatorial nature of this task led to the development of approaches with restrictions on(More)