Sara Al-Sweidi

Learn More
17β-estradiol is well known to have neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We investigated the neuroprotective contribution of estrogen receptors (ERα and ERβ) against MPTP toxicity by examining the membrane dopamine (DA) transporter (DAT), the vesicular monoamine transporter 2 (VMAT2) and(More)
Parkinson's disease (PD) is characterised by the loss of nigrostriatal dopamine (DA) neurones and glutamate overactivity. There is substantial evidence to suggest that oestrogens prevent or delay the disease. 17β-oestradiol has neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and modulates brain NMDA(More)
Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson's disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to(More)
Glutamate is the most important brain excitatory neurotransmitter and glutamate overactivity is well documented in Parkinson's disease (PD). Metabotropic glutamate (mGlu) receptors are reported to interact with membrane estrogen receptors (ERs) and more specifically the mGlu5 receptor subtype. 17β-estradiol and mGlu5 antagonists have neuroprotective effects(More)
Ethanolamine plasmalogens (PlsEtn) are a class of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position that play an important role in the structure and function of membranes. Previous reports have suggested a link between reduced blood and brain PlsEtn levels and Parkinson's disease (PD). We recently reported that the DHA containing(More)
  • 1