Learn More
This review article presents a general view of the recent progress in the fast developing area of surface-enhanced Raman scattering spectroscopy as an analytical tool for the detection and identification of molecular species in very small concentrations, with a particular focus on potential applications in the biomedical area. We start with a brief overview(More)
Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the(More)
We report on the fabrication of a SERS substrate comprising magnetic and silver particles encapsulated within a poly(N-isopropylacrylamide) (pNIPAM) thermoresponsive microgel. This colloidal substrate has the ability to adsorb analytes from solution while it is expanded (low temperature) and reversibly generate hot spots upon collapse (high temperature or(More)
Feature film: Thin films made by exponential layer-by-layer growth display high diffusivity and can be readily infiltrated with inorganic nanoparticles. They can sequestrate molecular systems from solution as a function of the composition of their layers, while providing intense surface-enhanced Raman scattering (SERS) signals (see picture).
We introduce here a simple approach in which a cyclodextrin, functionalized with thiols in the narrower rim, is assembled onto the silver surface of a SERS platform composed of polystyrene beads coated with silver nanoparticles. Trapping properties of the fabricated sensor are demonstrated through the retention of different enantiomers (R,R or/and S,S) of(More)
Colloidal metal nanoparticles present very special optical and electromagnetic properties at the nanoscale range. Such plasmonic properties have derived in a huge research field that encompasses the understanding of nanoparticle formation mechanisms for the ultimate goal of developing novel materials for real-life applications. Plasmonic sensing is(More)
Microalgae and cyanobacteria are promising organisms for sustainable biofuel production, but several challenges remain to make this economically viable, including identification of optimized strains with high biomass productivity. Here we report on a novel methodology for the label-free screening and sorting of cyanobacteria and microalgae in a microdroplet(More)
Surface-enhanced Raman scattering (SERS) can be combined with microfluidics for rapid multiplex analyte screening. Through combination of the high intensity and complex signals provided by SERS with the flow characteristics of microfluidic channels, we engineered a microdevice that is capable of monitoring various analytes from different sources in real(More)
  • 1