Learn More
We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to(More)
Cortical layering is a hallmark of the mammalian neocortex and a major determinant of local synaptic circuit organization in sensory systems. In motor cortex, the laminar organization of cortical circuits has not been resolved, although their input-output operations are crucial for motor control. Here, we developed a general approach for estimating(More)
Single-unit activity in the neostriatum of awake monkeys shows a marked dependence on expected reward. Responses to visual cues differ when animals expect primary reinforcements, such as juice rewards, in comparison to secondary reinforcements, such as tones. The mechanism of this reward-dependent modulation has not been established experimentally. To(More)
We study the dynamics of excitable integrate-and-fire neurons in a small-world network. At low densities p of directed random connections, a localized transient stimulus results either in self-sustained persistent activity or in a brief transient followed by failure. Averages over the quenched ensemble reveal that the probability of failure changes from 0(More)
Plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. In vitro, associative pairing of presynaptic spiking and stimulus-induced postsynaptic depolarization causes changes in the synaptic efficacy of the presynaptic neuron, when activated by extrinsic stimulation. In vivo, such paradigms can alter the(More)
The prefrontal cortex and basal ganglia are deeply implicated in working memory. Both structures are subject to dopaminergic neuromodulation in a way that exerts a critical influence on the proper operation of working memory. We present a novel network model to elucidate the role of phasic dopamine in the interaction of these two structures in initiating(More)
Movement representation by the motor cortex (M1) has been a theoretical interest for many years, but in the past several years it has become a more practical question, with the advent of the brain-machine interface. An increasing number of groups have demonstrated the ability to predict a variety of kinematic signals on the basis of M1 recordings and to use(More)
The method of Structural Risk Minimization refers to tuning the capacity of the classifier to the available amount of training data. This capacity is influenced by several factors, including: (1) properties of the input space, (2) nature and structure of the classifier, and (3) learning algorithm. Actions based on these three factors are combined here to(More)
A robust identification algorithm has been developed for linear, time-invariant, multiple-input single-output systems, with an emphasis on how this algorithm can be used to estimate the dynamic relationship between a set of neural recordings and related physiological signals. The identification algorithm provides a decomposition of the system output such(More)