Saptarshi Kar

  • Citations Per Year
Learn More
Endothelial dysfunction causes an imbalance in endothelial NO and O₂·⁻ production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation(More)
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O(2)(•-)) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO(-)) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown(More)
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH(4)) is oxidized to dihydrobiopterin, which competes with BH(4)(More)
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O(2) (•-)) production from endothelium and(More)
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical(More)
Jennifer P. Ngo, Saptarshi Kar, Michelle M. Kett, Bruce S. Gardiner, James T. Pearson, David W. Smith, John Ludbrook, John F. Bertram, and Roger G. Evans Department of Physiology, Monash University, Melbourne, Australia; Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia; Monash Biomedical Imaging Facility, Monash(More)
Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules(More)
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an(More)
Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries(More)
In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for(More)