Saoussen Turki

Learn More
In this work the effect of several organic nitrogen sources on lipase production in Yarrowia lipolytica LgX64.81 overproducing mutant was studied. Among them, tryptone and peptone showed the most prominent stimulatory effect. Interestingly, only tryptic and peptic casein digest were found to highly induce lipase biosynthesis while lipase production was very(More)
Yarrowia lipolytica LgX64.81 is a non-genetically modified mutant that was previously identified as a promising microorganism for extracellular lipase production. In this work, the development of a fed-batch process for the production of this enzyme in this strain was described. A lipolytic activity of 2,145 U/mL was obtained after 32 h of batch culture in(More)
Interest in extracellular lipase sourced from the non conventional yeast Yarrowia lipolytica has increased over the last decade. The enzyme was recently suggested as a good candidate for pancreatic exocrine insufficiency treatment. However, there is still a lack of oral safety evaluation data. In this work, we conducted acute and 28-day repeated dose(More)
Yarrowia lipolytica lipase has been assumed to be a good candidate for the treatment of fat malabsorption in patients with pancreatic insufficiency. Nevertheless, no systematic studies on its stability under physiological conditions pertaining to the human GI (gastrointestinal) tract have been published. Stability of various Y. lipolytica lipase powder(More)
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the(More)
  • 1