Santosh Ranjan Mohanty

Learn More
Green manures are widely used in rice production and may influence methane efflux (CH4). Influence of application of Azolla (A. caroliniana Wild.), a widely used biofertilizer for rice (Oryza sativa L.), on CH4 efflux from a flooded alluvial soil planted to rice, and select soil and plant variables were investigated in a field experiment at Cuttack, India.(More)
Methane (CH4) emission from rice fields at Cuttack (State of Orissa, eastern India) has been recorded using an automatic measurement system (closed chamber method) from 1995–1998. Experiments were laid out to test the impact of water regime, organic amendment, inorganic amendment and rice cultivars. Organic amendments in conjunction with chemical N (urea)(More)
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated(More)
 CH4 production in an alluvial soil, unamended or amended with rice straw (1% w/w), was examined under nonflooded [–1.5 MPa, –0.01 MPa and 0 MPa (saturated) and flooded (1 : 1.25 soil to water ratio)] conditions during a 40-day incubation in closed Vacutainer tubes. CH4 production was negligible at –1.5 MPa, but increased with an increase in the moisture(More)
In a laboratory incubation study, the effect of select heavy metals on methane (CH4) oxidation in two rice soils was investigated under two moisture regimes. Heavy metals differed in their effect on CH4 oxidation in both soils under the two water regimes. Cr significantly inhibited CH4 oxidation in the alluvial soil at 60% moisture holding capacity, while(More)
Tropical rice paddy is considered to be one of the major anthropogenic source of atmospheric methane (CH4). In a field study spread over the dry and wet seasons of a calendar year, the CH4 emission from upland (oilseed and pulse) crops in the dry season and a succeeding lowland rice (Oryza sativa L.) crop in the wet season was compared with rice–rice(More)
This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for(More)
The influence of six nitrification inhibitors (NI) on CH4 production in an alluvial soil under flooded condition was studied in a laboratory incubation experiment. The inhibition of CH4 production followed the order of sodium azide > dicyandiamide (DCD) > pyridine > aminopurine > ammonium thiosulfate > thiourea. Inhibition of CH4 production in DCD-amended(More)
It has been predicted that soil CH4 consumption potential will increase due to rise in concentration of atmospheric CH4. However, it is unclear how this altered activity of soil will influence soil biogeochemical processes. Experiments were carried out to examine the effect of CH4 feedback response on (1) CH4 consumption potential, (2) population dynamics(More)
A laboratory incubation experiment was conducted with uranium-contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of terminal electron-accepting processes (TEAPs) was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4(2-) reduction, and CH4(More)