Santiago Vilar

Learn More
The distribution of compounds between blood and brain is a very important consideration for new candidate drug molecules. In this paper, we describe the derivation of two linear discriminant analysis (LDA) models for the prediction of passive blood-brain partitioning, expressed in terms of logBB values. The models are based on computationally derived(More)
The search for new compounds with a given biological activity requires enormous effort in terms of manpower and cost. This effort arises from the large number of compounds that need to be synthesized and subsequently biologically evaluated. For this reason the pharmaceutical industry has shown great interest in theoretical methods that enable the rational(More)
The numerical encoding of chemical structure with Topological Indices (TIs) is currently growing in importance in Medicinal Chemistry and Bioinformatics. This approach allows the rapid collection, annotation, retrieval, comparison and mining of chemical structures within large databases. TIs can subsequently be used to seek quantitative structure-activity(More)
BACKGROUND Drug-drug interactions (DDIs) are responsible for many serious adverse events; their detection is crucial for patient safety but is very challenging. Currently, the US Food and Drug Administration and pharmaceutical companies are showing great interest in the development of improved tools for identifying DDIs. METHODS We present a new(More)
Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients' quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol(More)
OBJECTIVE Data-mining algorithms that can produce accurate signals of potentially novel adverse drug reactions (ADRs) are a central component of pharmacovigilance. We propose a signal-detection strategy that combines the adverse event reporting system (AERS) of the Food and Drug Administration and electronic health records (EHRs) by requiring signaling in(More)
The evolution of bio- and cheminformatics associated with the development of specialized software and increasing computer power has produced a great interest in theoretical in silico methods applied in drug rational design. These techniques apply the concept that "similar molecules have similar biological properties" that has been exploited in Medicinal(More)
Network theory allows relationships to be established between numerical parameters that describe the molecular structure of genes and proteins and their biological properties. These models can be considered as quantitative structure-activity relationships (QSAR) for biopolymers. The work described here concerns the first QSAR model for 122 proteins that are(More)
BACKGROUND Adverse drug events (ADE) cause considerable harm to patients, and consequently their detection is critical for patient safety. The US Food and Drug Administration maintains an adverse event reporting system (AERS) to facilitate the detection of ADE in drugs. Various data mining approaches have been developed that use AERS to detect signals(More)
Cytidine deaminase (EC 3.5.4.5, CDA), an enzyme of the pyrimidine salvage pathways, is responsible for the degradation and inactivation of several cytidine-based antitumor drugs such as cytarabine, gemcitabine, decitabine, and azacytidine. Thus, CDA inhibitors are highly sought after as compounds to be co-administered with said drugs to improve their(More)