Santiago Rodríguez de Córdoba

Learn More
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of(More)
Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible(More)
Haemolytic uraemic syndrome (HUS) is a clinical entity defined as the triad of nonimmune haemolytic anaemia, thrombocytopenia, and acute renal failure, in which the underlying lesions are mediated by systemic thrombotic microangiopathy (TMA). Atypical HUS (aHUS) is a sub-type of HUS in which the TMA phenomena are the consequence of decreased regulation of(More)
C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement(More)
Factor H is an essential regulatory protein that plays a critical role in the homeostasis of the complement system in plasma and in the protection of bystander host cells and tissues from damage by complement activation. Genetic and structural data generated during recent years have been instrumental to delineate the functional domains responsible for these(More)
Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase.(More)
The efficiency of the complement system as an innate immune defense mechanism depends on a fine control that restricts its action to pathogens and prevents non-specific damage to host tissues. Genetic and functional analyses have shown that this critical control of complement activation may be impaired in atypical hemolytic uremic syndrome (aHUS) patients.(More)
Hemolytic-uremic syndrome (HUS) is a microvasculature disorder leading to microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Most cases of HUS are associated with epidemics of diarrhea caused by verocytotoxin-producing bacteria, but atypical cases of HUS not associated with diarrhea (aHUS) also occur. Early studies describing the(More)
OBJECTIVE To study EPM2B gene mutations and genotype-phenotype correlations in patients with Lafora disease. METHODS The authors performed a clinical and mutational analysis of 25 patients, from 23 families, diagnosed with Lafora disease who had not shown mutations in the EPM2A gene. RESULTS The authors identified 18 mutations in EPM2B, including 12(More)
A subgroup of patients with the most severe form of the Hemolytic Uremic Syndrome (HUS) presents mutations in the complement regulatory protein factor H. The functional analyses of the factor H mutant proteins purified from some of these patients have shown a specific defect in the capacity to control complement activation on cellular surfaces. Here, we(More)