Santhosh M. Baby

Learn More
This review is divided into three parts: (a) The primary site of oxygen sensing is the carotid body which instantaneously respond to hypoxia without involving new protein synthesis, and is historically known as the first oxygen sensor and is therefore placed in the first section (Lahiri, Roy, Baby and Hoshi). The carotid body senses oxygen in acute hypoxia,(More)
Hypoxia-inducible factor-1α (HIF-1α) protein, a heterodimeric transcription factor that regulates transcriptional activation of several genes, is involved in adaptive responses to hypoxia. Earlier, we have reported that in carotid body (CB), the peripheral oxygen sensing organ, HIF-1α is up-regulated during hypoxia. One model proposes that an intact(More)
The present study describes the differential distributions in the brain of the two goldfish gonadotropin-releasing hormone (GnRH) receptors, using both immunohistochemistry and in situ hybridization approaches. The goldfish GnRH GfA and GfB receptors are variant forms of the same receptor subtype, although with distinct differences in ligand binding(More)
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory(More)
Acute hypoxia instantaneously increases the chemosensory discharge from the carotid body, increasing ventilation mostly by inhibiting the oxygen sensitive ion channels and exciting the mitochondrial functions in the glomus cells. On the other hand, Fe2+-chelation mimics hypoxia by inhibiting the prolyl hydroxylases and the degradation of HIF-1alpha in(More)
Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal(More)
Using combined nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd) histochemistry and salmon gonadotropin-releasing hormone (sGnRH) immunocytochemistry, it is reported for the first time that possible potential contacts occur between the nitric oxide (NO)- and the GnRH-containing neurons in the brain of a freshwater teleost, Rhodeus amarus.(More)
The present investigation provides for the first time, unambiguous information on the occurrence of hypoxia-inducible factors (HIF-1α and HIF-1β proteins) in normoxia (Nx) and their interaction with hypoxia (Hx) and intracellular Fe2+ chelation in the rat carotid body (CB) glomus cells. HIF-1α bound to HIF-1β translocated into the nucleus is identified on(More)
The hypoxia inducible factor-1alpha (HIF-1alpha) protein level is increased by hypoxia and iron chelator (ciclopirox olamine) in isolated rat carotid body (CB) and glomus cells. Reverse transcription and polymerase chain reaction (RT-PCR) are performed to test whether this increase is caused, at least in part, by increased HIF-1alpha gene transcription.(More)