Learn More
Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Encouraged by these results, we provide an extensive empirical evaluation of CNNs on large-scale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes. We study multiple approaches for extending the(More)
We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images(More)
We present a novel scale adaptive, nonparametric approach to clustering point patterns. Clusters are detected by moving all points to their cluster cores using shift vectors. First, we propose a novel scale selection criterion based on local density isotropy which determines the neighborhoods over which the shift vectors are computed. We then construct a(More)
  • 1