Sankaran Subramanian

Learn More
Enhancement of image intensity, using the T1-weighted spoiled gradient-echo (SPGR) sequence, was measured in SCC tumor implanted in the flank of C3H mice while they were subjected to several types of oxygenation challenges inside a hyperbaric chamber designed and constructed to fit in an MRI resonator. The central portions of the tumor gave a positive(More)
The absolute partial pressure of oxygen (pO(2)) in the mammary gland pad and femoral muscle of female mice was measured using EPR oximetry at 700 MHz. A small quantity of lithium phthalocyanine (LiPc) crystals was implanted in both mammary and femoral muscle tissue of female C3H mice. Subsequent EPR measurements were carried out 1-30 days after implantation(More)
A novel method, called relaxo-oximetry, for rapid spatially resolved in vivo measurements of oxygen concentration using time-domain radiofrequency (RF) electron paramagnetic resonance (EPR) is described. Time-domain data from triaryl methyl (TAM)-based single-electron contrast agents were processed by systematic deletion of the initial time points to arrive(More)
The performance of two electron paramagnetic resonance (EPR) spectrometers/imagers, one configured in pulsed mode and the other in continuous wave (CW) mode, at an operating frequency of 300 MHz is compared. Using the same resonator (except for altered Q-factors), identical samples and filling factors in the two techniques have been evaluated for their(More)
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that detects and characterizes molecules with unpaired electrons (i.e., free radicals.) Unlike the closely related nuclear magnetic resonance (NMR) spectroscopy, EPR is still under development as an imaging modality. Athough a number of physical factors have hindered its development, EPR's(More)
The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a(More)
Magnetic resonance imaging (MRI) provides high-resolution morphological images useful in diagnostic radiology to differentiate between normal and abnormal/pathological states in tissues. More recently, emerging developments in MRI have added a functional/physiological dimension to anatomical images. Electron paramagnetic resonance (EPR), a magnetic(More)
In this study we report the application of continuous-wave (CW) electron paramagnetic resonance (EPR) constant-time spectral spatial imaging (CTSSI) for in vivo oxymetry. 2D and 3D SSI studies of a phantom and live mice were carried out using projection reconstruction (PR) and constant-time (CT) modalities using a CW-EPR spectrometer/imager operating at 300(More)
This study describes the use of the single-point imaging (SPI) modality, also known as constant-time imaging (CTI), in radiofrequency (RF) Fourier transform (FT) electron paramagnetic resonance (EPR). The SPI technique, commonly used for high-resolution solid-state nuclear magnetic resonance (NMR) imaging, has been successfully applied to 2D and 3D(More)
Oxygenation status is a key determinant in both tumor growth and responses to therapeutic interventions. The oxygen partial pressure (pO2) was assessed using a novel pulsed electron paramagnetic resonance (EPR) spectroscopy at 750 MHz. Crystals of lithium phthalocyanine (LiPc) implanted into either squamous cell carcinoma (SCC) tumor or femoral muscle on(More)