Learn More
Metal–organic frameworks (MOFs) are an emerging class of nanoporous materials comprising metal centers connected by various organic linkers to create one-, two-, and threedimensional porous structures with tunable pore volumes, surface areas, and chemical properties. Several thousand MOF materials have been synthesized and their numbers continue to grow(More)
Alcohol (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) and water vapor adsorption in zeolitic imidazolate frameworks (ZIF-8, ZIF-71 and ZIF-90) with similar crystal sizes was systematically studied. The feasibility of applying these ZIF materials to the recovery of bio-alcohols is evaluated by estimating the vapor-phase alcohol-water sorption(More)
We report the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature in the formation of single-walled aluminosilicate nanotubes. We characterize the structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm by electrospray(More)
Single-walled metal oxide (aluminosilicate) nanotubes are excellent candidates for addressing the long-standing issue of functionalizing nanotube interiors, due to their high surface reactivity and controllable dimensions. However, functionalization of the nanotube interior is impeded by its high surface silanol density (9.1 -OH/nm(2)) and resulting(More)
Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with covalently bonded primary amine moieties on their inner wall, synthesized through a one-step approach. Conclusive molecular-level structural information on the(More)
Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas(More)
Nanopore-based biomolecular sensing is an emerging nanotechnology which relies on the ability to measure changes in ionic conductance of single nanoscale pores as biomolecular analytes are driven through them, one at a time, by an applied electric field. Nanopores constructed from self-assembled proteins as well as using silicon-based fabrication techniques(More)
Mutagens, distinguishable from benzo[a]pyrene and from mutagenic amino acid and protein pyrolysis products, are formed when ground beef is cooked in a home hamburger cooking appliance or when beef stock is concentrated, by boiling, to a paste known commercially as beef extract. "Well-done" hamburgers contain about 0.14 part per million of the mutagens, and(More)
Understanding transport phenomena of fluids through nanotubes (NTs) is of great interest in order to enable potential application of NTs as separation devices, encapsulation media for molecule storage and delivery, and sensors. Single-walled metal oxide NTs are interesting materials because they present a well-defined solid-state structure, precisely(More)
Separation membranes with high performance can potentially be made by incorporating zeolites (or other nanoporous molecular sieves) in polymeric materials. However, the fabrication of technologically viable membranes has been hampered by poor adhesion between the inorganic crystals and the polymer and by inadequate dispersion of the inorganic particles. We(More)