Learn More
We propose a new switching probability model for combinational circuits using a<b>Logic-Induced-Directed-Acyclic-Graph</b>(LIDAG) and prove that such a graph corresponds to a<b>Bayesian Network</b>guaranteed to map all the dependencies inherent in the circuit. This switching activity can be estimated by capturing complex dependencies (spatio-temporal and(More)
— In this paper, we report Magnetic Quantum Cellular Automata (MQCA) realization using multi-layer cells with tilted polarizer reference layer with a particular focus on the critical need to shift towards the multi-layer cells as elemental entities from the conventional single-domain nanomagnets. We have reported a novel spin-transfer torque current induced(More)
A coherent two-channel source of Cherenkov superradiance pulses Appl. Nonvolatile organic write-once-read-many-times memory devices based on hexadecafluoro-copper-phthalocyanine Appl. Nonvolatile organic write-once-read-many-times memory devices based on hexadecafluoro-copper-phthalocyanine APL: Org. Improved performance of non-volatile memory with Au-Al2O3(More)
With the goal of building an hierarchical design methodology for quantum-dot cellular automata (QCA) circuits, we put forward a novel, theoretically sound, method for abstracting the behavior of circuit components in QCA circuit, such as majority logic, lines, wire-taps, cross-overs, inverters, and corners, using macromodels. Recognizing that the basic(More)
In this paper, different circuits of Quantum-dot Cellular Automata (QCA) are proposed for the so-called coplanar crossing. Coplanar crossing is one of the most interesting features of QCA because it allows for mono-layered interconnected circuits, whereas CMOS technology needs different levels of metalization. However, the characteristics of the coplanar(More)