Learn More
The imaging of specific molecular targets that are associated with cancer should allow earlier diagnosis and better management of oncology patients. Positron emission tomography (PET) is a highly sensitive non-invasive technology that is ideally suited for pre-clinical and clinical imaging of cancer biology, in contrast to anatomical approaches. By using(More)
UNLABELLED For solid tumors and metastatic lesions, tumor vascularity is a critical factor in assessing response to therapy. Here we report the first example, to our knowledge, of (64)Cu-labeled vascular endothelial growth factor 121 (VEGF(121)) for PET of VEGF receptor (VEGFR) expression in vivo. METHODS VEGF(121) was conjugated with(More)
CONTEXT Deficits in cerebral glucose utilization have been identified in patients with cognitive dysfunction attributed to various disease processes, but their prognostic and diagnostic value remains to be defined. OBJECTIVE To assess the sensitivity and specificity with which cerebral metabolic patterns at a single point in time forecast subsequent(More)
UNLABELLED A meta-analysis of the literature for the use of FDG PET in the detection of recurrent colorectal cancer (CRC) was conducted to evaluate the quality of the reported studies. Overall values for the sensitivity and specificity of whole-body FDG PET and an overall FDG PET-directed percentage change in management were also determined through this(More)
UNLABELLED We are developing procedures to repeatedly and noninvasively image the expression of transplanted reporter genes in living animals and in patients, using PET. We have investigated the use of the Herpes Simplex Virus type 1 thymidine kinase gene (HSV1-tk) as a reporter gene and [8-14C]-ganciclovir as a reporter probe. HSV1-tk, when expressed,(More)
Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their(More)
We report the in vivo targeting and imaging of tumor vasculature using arginine-glycine-aspartic acid (RGD) peptide-labeled quantum dots (QDs). Athymic nude mice bearing subcutaneous U87MG human glioblastoma tumors were administered QD705-RGD intravenously. The tumor fluorescence intensity reached maximum at 6 h postinjection with good contrast. The results(More)
Molecular imaging can allow the non-invasive assessment of biological and biochemical processes in living subjects. Such technologies therefore have the potential to enhance our understanding of disease and drug activity during preclinical and clinical drug development, which could aid decisions to select candidates that seem most likely to be successful or(More)