Learn More
Satisfiability Modulo Theories (SMT) refers to the problem of determining whether a first-order formula is satisfiable with respect to some logical theory. Solvers based on SMT are used as back-end engines in model checking applications such as bounded, interpolation-based, and predicate abstraction-based model checking. After a brief illustration of these(More)
A malware detector is a system that attempts to determine whether a program has malicious intent. In order to evade detection, malware writers (hackers) frequently use obfuscation to morph malware. Malware detectors that use a pattern-matching approach (such as commercial virus scanners) are susceptible to obfuscations used by hackers. The fundamental(More)
Sketching is a software synthesis approach where the programmer develops a partial implementation - a sketch - and a separate specification of the desired functionality. The synthesizer then completes the sketch to behave like the specification. The correctness of the synthesized implementation is guaranteed by the compiler, which allows, among other(More)
—The classical formulation of the program-synthesis problem is to find a program that meets a correctness specification given as a logical formula. Recent work on program synthesis and program optimization illustrates many potential benefits of allowing the user to supplement the logical specification with a syntactic template that constrains the space of(More)
We present a novel approach to automatic synthesis of loop-free programs. The approach is based on a combination of oracle-guided learning from examples, and constraint-based synthesis from components using satisfiability modulo theories (SMT) solvers. Our approach is suitable for many applications, including as an aid to program understanding tasks such as(More)
A significant challenge to the formal validation of software-based industrial control systems is that system requirements are often imprecise, non-modular, evolving, or even simply unknown. We propose a framework for mining requirements from the closed-loop model of an industrial-scale control system, such as one specified in the Simulink modeling language.(More)
— We present a mathematical programming-based method for model predictive control of discrete-time cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as(More)