Learn More
In this paper, we present the implementation and silicon measurements results of a 64bit processor fabricated in 0.18µm technology. The processor employs a delay-error detection and correction scheme called Razor to eliminate voltage safety margins and scale voltage 120mV below the first failure point. It achieves 44% energy savings over the worst case(More)
—Traditional adaptive methods that compensate for PVT variations need safety margins and cannot respond to rapid environmental changes. In this paper, we present a design (RazorII) which implements a flip-flop with in situ detection and architectural correction of variation-induced delay errors. RazorII processor through radiation experiments.
A 2.6pJ/Inst subthreshold sensor processor designed for energy efficiency has been fabricated. A two-stage micro-architecture was implemented to mitigate the impact of process variation in subthreshold operation. Careful library cell selection and robust SRAM design enabled fully functional operation from 1.2V to 200mV. We analyze the variation in frequency(More)
Much research has been done lately concerning analysis and optimization techniques for on-chip power grid networks.However, all of these approaches assume a particular model or behavior of the power delivery.In this paper, we describe the first detailed full-die dynamic model of an industrial microprocessor design, including package and non-uniform decap(More)
—Subthreshold circuits have drawn a strong interest in recent ultralow power research. In this paper, we present a highly efficient subthreshold microprocessor targeting sensor application. It is optimized across different design stages including ISA definition, microarchitecture evaluation and circuit and implementation optimization. Our investigation(More)
Power supply integrity analysis is critical in modern high perfor-mance designs. In this paper, we propose a stochastic approach to obtain statistical information about the collective IR and LdI/dt drop in a power supply network. The currents drawn from the power grid by the blocks in a design are modelled as stochastic processes and their statistical(More)
A nonparametric k-nearest-neighbor-based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering nonuniform probability densities in the region of k-nearest neighbors around each sample point. It aims to improve the classical estimators in three situations: first, when the dimensionality of the random(More)
Sensor network processors and their applications are a growing area of focus in computer system research and design. Inherent to this design space is a reduced processing performance requirement and extremely high energy constraints, such that sensor network processors must execute low-performance tasks for long durations on small energy supplies. In this(More)
Coronary stents are tubular type scaffolds that are deployed, using an inflatable balloon on a catheter, most commonly to recover the lumen size of narrowed (diseased) arterial segments. A common differentiating factor between the numerous stents used in clinical practice today is their geometric design. An ideal stent should have high radial strength to(More)
We present here a multi-objective and multi-disciplinary coronary stent design optimization paradigm. Coronary stents are tubular, often mesh-like, structures which are deployed in diseased (stenosed) artery segments to provide a scaffolding feature that compresses atheromatus plaque, hence restoring luminal area and maintaining vessel patency. A three(More)