Learn More
Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity(More)
Nearly 20% of yeast genes are required for viability, hindering genetic analysis with knockouts. We created promoter-shutoff strains for over two-thirds of all essential yeast genes and subjected them to morphological analysis, size profiling, drug sensitivity screening, and microarray expression profiling. We then used this compendium of data to ask which(More)
Using DNA microarrays, we compared global transcript stability profiles following chemical inhibition of transcription to rpb1-1 (a temperature-sensitive allele of yeast RNA polymerase II). Among the five inhibitors tested, the effects of thiolutin and 1,10-phenanthroline were most similar to rpb1-1. A comparison to various microarray data already in the(More)
Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most(More)
Recent mammalian microarray experiments detected widespread transcription and indicated that there may be many undiscovered multiple-exon protein-coding genes. To explore this possibility, we labeled cDNA from unamplified, polyadenylation-selected RNA samples from 37 mouse tissues to microarrays encompassing 1.14 million exon probes. We analyzed these data(More)
Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast(More)
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein(More)
BACKGROUND S-nitrosation--the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins--is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In(More)
  • 1