Learn More
The first two-dimensional Fourier-transform electron spin resonance (2D-FT-ESR) studies of nitroxide-labeled lipids in membrane vesicles are reported. The considerable enhancement this experiment provides for extracting rotational and translational diffusion rates, as well as orientational ordering parameters by means of ESR spectroscopy, is demonstrated.(More)
Fluorescence depolarization and decay kinetic profiles, together with differential scanning calorimetric thermograms and circular dichroism spectra, are measured to understand the respective roles of Ca(2+) ions at the strong (Ca1) and weak binding sites (Ca2) of subtilisin Carlsberg (sC). Thermal denaturation temperature decreases considerably with Ca1(More)
OBJECTIVES The prevalence of metabolic syndrome has recently increased. Payments from the Korea Labor Welfare Corporation for compensation for mortality in workers caused by cardiovascular and cerebrovascular diseases have also increased in Korea in recent years. The association of metabolic syndrome and cardiocerebrovascular disease has been investigated(More)
OBJECTIVE To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. METHODS 27 consecutive patients (mean body mass(More)
Exposing children to environmental pollutants during important times of physiological development can lead to long-lasting health problems, dysfunction, and disease. The location of children's schools can increase their exposure. We examined the extent of air pollution from industrial sources around public schools in Michigan to find out whether air(More)
A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI) techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell(More)
Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions in fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed on RBCs from the cord blood of newborn infants and from adult mothers or nonpregnant women using(More)
Multiscale reactive molecular dynamics simulations are used to study proton transport through the central region of ClC-ec1, a widely studied ClC transporter that enables the stoichiometric exchange of 2 Cl(-) ions for 1 proton (H(+)). It has long been known that both Cl(-) and proton transport occur through partially congruent pathways, and that their(More)
The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate(More)
Hematite (10 mg of Fe/L) floc-humic acid assemblages have been formed at pH 4 either by first aggregating hematite particles with salt (100 mM KCl) and then adding humic acid (salt-particle-organic or SPO assemblages) or by suspending the hematite particles in humic acid solutions and then adding salt to induce aggregation (organic-particle-salt or OPS(More)