Sangyeon Pak

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Hybrid colloidal quantum dot (CQD) solar cells are fabricated from multilayer stacks of lead sulfide (PbS) CQD and single layer graphene (SG). The inclusion of graphene interlayers is shown to increase power conversion efficiency by 9.18%. It is shown that the inclusion of conductive graphene enhances charge extraction in devices. Photoluminescence shows(More)
  • John Hong, Young-Woo Lee, +8 authors Jong Min Kim
  • 2016
Tailoring the binary metal oxide along with developing new synthetic methods for controlling resultant nanostructures in a predictive way is an essential requirement for achieving the further improved electrochemical performance of pseudocapacitors. Here, through a rational design of the supersaturation-mediated driving force for hydrothermal nucleation and(More)
Transition metal dichalcogenide (TMDC) monolayers are considered to be potential materials for atomically thin electronics due to their unique electronic and optical properties. However, large-area and uniform growth of TMDC monolayers with large grain sizes is still a considerable challenge. This report presents a simple but effective approach for(More)
The ability to rationally design and manipulate the interfacial structure in lithium ion batteries (LIBs) is of utmost technological importance for achieving desired performance requirements as it provides synergistic effects to the electrochemical properties and cycling stability of electrode materials. However, despite considerable efforts and progress(More)
Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing(More)
Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent and flexible devices. The performance of these devices is critically dependent on the layer thickness and the(More)
  • 1