Learn More
Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in practice. The aim of this paper is to provide a review of(More)
Life-cycle assessment (LCA) is a method for evaluating the environmental impacts of products holistically, including direct and supply chain impacts. The current LCA methodologies and the standards by the International Organization for Standardization (ISO) impose practical difficulties for drawing system boundaries; decisions on inclusion or exclusion of(More)
Metrics on resource productivity currently used by governments suggest that some developed countries have increased the use of natural resources at a slower rate than economic growth (relative decoupling) or have even managed to use fewer resources over time (absolute decoupling). Using the material footprint (MF), a consumption-based indicator of resource(More)
Prior studies have estimated that a liter of bioethanol requires 263-784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water(More)
Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in(More)
Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models,(More)
Embodied greenhouse gas (GHG) emissions and their structure of inducement by the supply-chain networks of 480 goods and services in the United States are analyzed for 44 GHGs. Producing a dollar of a product or service generates an average of 0.36 kg of CO2 equivalent GHGs onsite, increasing to 0.83 kg when supply-chain-induced emissions are taken into(More)
Today's material welfare has been achieved at the expense of consumption of finite resources and generation of environmental burdens. Over the past few decades the volume of global consumption has grown dramatically, while at the same time technological advances have enabled products with greater efficiencies. These two directions of change, consumption(More)
As the services industry has grown and diversified, there has been a rapid rise in the share of energy and material costs in provision of services. As a result, services, which have traditionally been considered immaterial by their nature, are now absorbing substantial amounts of energy and material goods. By decomposing the CO2 emissions embodied in(More)
The rapid increase in human mobilization of phosphorus has raised concerns on both its supply security and its impact on the environment. Increasing the efficiency of phosphorus use is an approach to mitigate the adverse impacts associated with phosphorus consumption. This study estimates the life-cycle phosphorus use-efficiency of the US food system. A(More)