Sangram S. Sisodia

Learn More
High levels of familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 mutants G93A and G37R were previously shown to mediate disease in mice through an acquired toxic property. We report here that even low levels of another mutant, G85R, cause motor neuron disease characterized by an extremely rapid clinical progression, without changes in SOD1 activity.(More)
Mutations in Cu/Zn superoxide dismutase (SOD1) cause a subset of cases of familial amyotrophic lateral sclerosis. Four lines of mice accumulating one of these mutant proteins (G37R) develop severe, progressive motor neuron disease. At lower levels of mutant accumulation, pathology is restricted to lower motor neurons, whereas higher levels cause more severe(More)
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD)(More)
Missense mutations in two related genes, termed presenilin 1 (PS1) and presenilin 2 (PS2), cause dementia in a subset of early-onset familial Alzheimer's disease (FAD) pedigrees. In a variety of experimental in vitro and in vivo settings, FAD-linked presenilin variants influence the processing of the amyloid precursor protein (APP), leading to elevated(More)
Mutations in the presenilin 1 (PS1) and presenilin 2 genes cosegregate with the majority of early-onset familial Alzheimer's disease (FAD) pedigrees. We now document that the Abeta1-42(43)/Abeta1-40 ratio in the conditioned media of independent N2a cell lines expressing three FAD-linked PS1 variants is uniformly elevated relative to cells expressing similar(More)
A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation(More)
The majority of early-onset cases of familial Alzheimer's disease (FAD) are linked to mutations in two related genes, PS1 and PS2, located on chromosome 14 and 1, respectively. Using two highly specific antibodies against nonoverlapping epitopes of the PS1-encoded polypeptide, termed presenilin 1 (PS1), we document that the preponderant PS1-related species(More)
Trisomy 21 or Down syndrome (DS) is the most frequent genetic cause of mental retardation, affecting one in 800 live born human beings. Mice with segmental trisomy 16 (Ts65Dn mice) are at dosage imbalance for genes corresponding to those on human chromosome 21q21-22.3--which includes the so-called DS 'critical region'. They do not show early-onset of(More)
The amyloid precursor protein (APP) involved in Alzheimer's disease is a member of a larger gene family including amyloid precursor-like proteins APLP1 and APLP2. We generated and examined the phenotypes of mice lacking individual or all possible combinations of APP family members to assess potential functional redundancies within the gene family. Mice(More)
Accumulations of insoluble deposits of amyloid β-peptide are major pathological hallmarks of Alzheimer disease. Amyloid β-peptide is derived by sequential proteolytic processing from a large type I trans-membrane protein, the β-amyloid precursor protein. The proteolytic enzymes involved in its processing are named secretases. β- and γ-secretase liberate by(More)