Learn More
Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional(More)
The sensitive structural dependence of the optical properties of single-walled carbon nanotubes, which are dominated by excitons and tunable by changing diameter and chirality, makes them excellent candidates for optical devices. Because of strong many-electron interaction effects, the detailed dependence of the optical oscillator strength f(s) of excitons(More)
The origin of magnetic flux noise in superconducting quantum interference devices with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of(More)
We conducted micromagnetic numerical studies on the strong radiation of spin waves (SWs) produced by the magnetic-field-induced reversal of a magnetic vortex core, as well as their wave behaviors in magnetic nanowires. It was found that the radial SWs can be emitted intensively from a vortex core in a circular dot by virtue of localized large torques(More)
Relativistic quantum mechanics predicts that when the charge of a superheavy atomic nucleus surpasses a certain threshold, the resulting strong Coulomb field causes an unusual atomic collapse state; this state exhibits an electron wave function component that falls toward the nucleus, as well as a positron component that escapes to infinity. In graphene,(More)
Vacancy-induced magnetism in graphene bilayers is investigated using spin-polarized density functional theory calculations. One of two graphene layers has a monovacancy. Two atomic configurations for bilayers are considered with respect to the position of the monovacancy. We find that spin magnetic moments localized at the vacancy site decrease by ∼10% for(More)
gin of magnetic flux noise in dc Superconducting Quantum Interference Devices (SQUIDs) with a power spectrum scaling as 1/f (f is frequency) has been a puzzle for over 25 years. This noise limits both the low frequency performance of SQUIDs and the decoherence time of flux-sensitive superconducting qubits, making scaling-up for quantum computing(More)
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of(More)
Electron supercollimation, in which a wave packet is guided to move undistorted along a selected direction, is a highly desirable property that has yet to be realized experimentally. Disorder in general is expected to inhibit supercollimation. Here we report a counterintuitive phenomenon of electron supercollimation by disorder in graphene and related Dirac(More)
  • 1