Sangjin Kim

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false discovery rate (FDR). We propose to use the FDR as a screening(More)
In this paper, we investigate a combination of several feed-forward deep neural networks (DNNs) for a high-quality statistical parametric speech synthesis system. Recently, DNNs have significantly improved the performance of essential components in the statistical parametric speech synthesis, e.g. spectral feature extraction, acoustic modeling and spectral(More)
  • 1