Sangjin Hong

Learn More
1. Recent results suggest that the major flux is carried by a monomeric function, not by an intermonomer electron flow. 2. The bifurcated reaction at the Qo-site involves sequential partial processes, - a rate limiting first electron transfer generating a semiquinone (SQ) intermediate, and a rapid second electron transfer in which the SQ is oxidized by the(More)
The homodimeric bc(1) complexes are membrane proteins essential in respiration and photosynthesis. The ~11Å distance between the two b(L)-hemes of the dimer opens the possibility of electron transfer between them, but contradictory reports make such inter-monomer electron transfer controversial. We have constructed in Rhodobacter sphaeroides a heterodimeric(More)
Cytochrome bd ubiquinol oxidase uses the electron transport from ubiquinol to oxygen to establish a proton gradient across the membrane. The enzyme complex consists of subunits CydA and B and contains two b- and one d-type hemes as cofactors. Recently, it was proposed that a third subunit named CydX is essential for the function of the complex. Here, we(More)
A three-dimensional reacting flow modeling approach is presented for diesel engine studies that can be used for predictions of trends in soot emissions for a wide range of operating conditions. The modeling framework employs skeletal chemistry for n-heptane for ignition and combustion, and links acetylene chemistry to the soot nucleation process. The soot(More)
Page 6030. This research was supported by Grants DE-FG0208ER15960 (S.A.D.) and DE-FG02-87ER13716 (R.B.G.) from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Sciences, U.S. Department of Energy, National Science Foundation Grant CHE-1026541 (S.A.D.), National Institutes of Health Grant GM062954(More)
Cytochrome bo3 is a respiratory proton-pumping oxygen reductase that is a member of the heme-copper superfamily that utilizes ubiquinol-8 (Q8H2) as a substrate. The current consensus model has Q8H2 oxidized at a low affinity site (QL), passing electrons to a tightly bound quinone cofactor at a high affinity site (QH site) that stabilizes the one-electron(More)
Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe (13)C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with(More)
  • 1