Sanghun Sin

Learn More
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal(More)
To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major(More)
Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength(More)
PURPOSE A retrospective, respiratory-gated technique for measuring dynamic changes in the upper airway over the respiratory cycle was developed, with the ultimate goal of constructing anatomically and functionally accurate upper airway models in obstructive sleep apnea patients. METHODS Three-dimensional cine, retrospective respiratory-gated, gradient(More)
Obstructive sleep apnea syndrome (OSAS) is associated with intermittent hypoxia and sleep loss. In children, impairments of cognitive function are important manifestations, but underlying pathology is unknown. We hypothesized that OSAS would affect the dentate gyrus, a hippocampal subdivision essential to neurogenesis and cognition, and that this impact(More)
PURPOSE Quantitative image analysis in previous research in obstructive sleep apnea syndrome (OSAS) has focused on the upper airway or several objects in its immediate vicinity and measures of object size. In this paper, we take a more general approach of considering all major objects in the upper airway region and measures pertaining to their individual(More)
Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by(More)
  • 1