Sanghun Sin

Learn More
To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major(More)
PURPOSE A retrospective, respiratory-gated technique for measuring dynamic changes in the upper airway over the respiratory cycle was developed, with the ultimate goal of constructing anatomically and functionally accurate upper airway models in obstructive sleep apnea patients. METHODS Three-dimensional cine, retrospective respiratory-gated, gradient(More)
Anatomical optical coherence tomography (aOCT) is a long-range endoscopic imaging modality capable of quantifying size and shape of the human airway. A challenge to its in vivo application is motion artifact due to respiratory-related movement of the airway walls. This paper represents the first demonstration of respiratory gating of aOCT airway data, and(More)
PURPOSE Quantitative image analysis in previous research in obstructive sleep apnea syndrome (OSAS) has focused on the upper airway or several objects in its immediate vicinity and measures of object size. In this paper, we take a more general approach of considering all major objects in the upper airway region and measures pertaining to their individual(More)
Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by(More)
  • 1