Sanghee Nah

  • Citations Per Year
Learn More
Plasmonic nanostructures confine light on the nanoscale, enabling ultra-compact optical devices that exhibit strong light-matter interactions. Quantum dots are ideal for probing plasmonic devices because of their nanoscopic size and desirable emission properties. However, probing with single quantum dots has remained challenging because their small size(More)
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization(More)
Sanghee Nah,† Linjie Li,† Ran Liu,† Junjie Hao,† Sang Bok Lee,*,†,⊥ and John T. Fourkas*,†,‡,§,| Department of Chemistry and Biochemistry, UniVersity of Maryland, College Park, Maryland 20742, Institute for Physical Science and Technology, UniVersity of Maryland, College Park, Maryland 20742, Maryland NanoCenter, UniVersity of Maryland, College Park,(More)
The ability to monitor etching solutions using a spectroscopy directly through existing Teflon lines in electronic industries is highly beneficial and offers many advantages. A monitoring method was developed using near-infrared (NIR) measurements with Teflon tubing as a sample container for the quantification of components in the indium-tin-oxide (ITO)(More)
One-dimensional potassium niobate nanowires are of interest as building blocks in integrated piezoelectric devices, exhibiting large nonlinear optical and piezoelectric responses. Here we present femtosecond measurements of light-induced polarization dynamics within an optically trapped ferroelectric nanowire, using the second-order nonlinear susceptibility(More)
We report on the dynamical response of single layer transition metal dichalcogenide MoS2 to intense above-bandgap photoexcitation using the nonlinear-optical second order susceptibility as a direct probe of the electronic and structural dynamics. Excitation conditions corresponding to the order of one electron-hole pair per unit cell generate unexpected(More)
Coupling of an atom-like emitter to surface plasmons provides a path toward significant optical nonlinearity, which is essential in quantum information processing and quantum networks. A large coupling strength requires nanometer-scale positioning accuracy of the emitter near the surface of the plasmonic structure, which is challenging. We demonstrate the(More)
We investigate the connections between two field-enhanced phenomena of gold nanoparticles: multiphoton-absorption-induced luminescence (MAIL) and metal-enhanced multiphoton absorption polymerization (MEMAP). We observe a strong correlation between the nanoparticles and aggregates that have high efficiency for each process. The results of our studies(More)
  • 1