Learn More
BACKGROUND Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of(More)
Impulsivity is a complex behaviour composed of different domains encompassing behavioural dis-inhibition, risky decision-making and delay discounting abnormalities. To investigate regional brain correlates between levels of individual impulsivity and grey matter volume, we performed voxel-based morphometric correlation analysis in 34 young, healthy subjects(More)
UNLABELLED Frontotemporal dementia (FTD) is a common cause of presenile dementia. The aim of the current study was 2-fold: (a) to delineate the brain regions with reduction of glucose metabolism, and (b) to investigate the hemispheric asymmetry of glucose metabolism in FTD using (18)F-FDG PET. METHODS We compared the regional metabolic patterns on(More)
BACKGROUND Pathological gambling may occur in Parkinson's disease (PD) as a complication of dopaminergic therapy. Neuroimaging studies have suggested an abnormal dopamine transmission within the reward system, but the changes in the neural network characterizing PD patients with pathological gambling have never been investigated. METHODS Thirty PD(More)
INTRODUCTION Internet game overuse is an emerging disorder and features diminished impulse control and poor reward-processing. In an attempt to understand the neurobiological bases of Internet game overuse, we investigated the differences in regional cerebral glucose metabolism at resting state between young individuals with Internet game overuse and those(More)
There is evidence that the right dorsolateral prefrontal cortex (DLPFC) may play a certain role in decision making related to reward value and time perception and, in particular, in the inhibitory control of impulsive decision making. Using the theta burst stimulation (TBS) and a delay discounting (DD) task, we investigated the potential role of right DLPFC(More)
Pathological gambling (PG) represents a behavioral side effect of dopamine replacement therapy in a minority of patients with Parkinson's disease (PD). Using striatal dopamine transporter (DAT) with single photon emission tomography we assessed presynaptic dopaminergic function in 8 PD patients with PG, 21 matched PD control subjects, and 14 healthy(More)
Generally, rewards that are received sooner are often preferred over future rewards, and the time between the choice and the reception of the reward is an important factor that influences our decisions, a phenomenon called delay discounting (DD). In DD, the medial prefrontal cortex (MePFC) and striatal dopamine neurotransmission both play an important role.(More)
Impulse control disorders such as pathological gambling (PG) are a serious and common adverse effect of dopamine (DA) replacement medication in Parkinson's disease (PD). Patients with PG have increased impulsivity and abnormalities in striatal DA, in common with behavioural and substance addictions in the non-PD population. To date, no studies have(More)
Decision making is a cognitive function relaying on a complex neural network. In particular, the right dorsolateral prefrontal cortex (DLPFC) plays a key role within this network. We used positron emission tomography (PET) combined with continuous theta burst transcranial magnetic stimulation (cTBS) to investigate neuronal and behavioral changes in normal(More)