Sang-Ryoung Kim

Learn More
Recently, enzymatic quorum quenching has proven its potential as an innovative approach for biofouling control in the membrane bioreactor (MBR) for advanced wastewater treatment. However, practical issues on the cost and stability of enzymes are yet to be solved, which requires more effective quorum quenching methods. In this study, a novel quorum quenching(More)
Recently, interspecies quorum quenching by bacterial cells encapsulated in a vessel was described and shown to be efficient and economically feasible for biofouling control in membrane bioreactors (MBRs). In this study, free-moving beads entrapped with quorum quenching bacteria were applied to the inhibition of biofouling in a MBR. Cell entrapping beads(More)
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs).(More)
It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated(More)
In the last 30 years, the use of membrane bioreactors (MBRs) for advanced wastewater treatment and reuse have been expanded continuously, but they still suffer from excessive energy consumption resulting from the intrinsic problem of membrane biofouling. One of the major causes of biofouling in MBRs is bacterial quorum sensing (QS) via N-acylhomoserine(More)
Quorum quenching (QQ) with a microbial vessel has recently been reported as an economically feasible biofouling control platform in a membrane bioreactor (MBR) for wastewater treatment. In this study, a quorum quenching MBR with a ceramic microbial vessel (CMV) was designed to overcome the extremely low F/M ratio inside a microbial vessel. The CMV was(More)
Highly effective antifouling was achieved by immobilizing and stabilizing an acylase, disrupting bacterial cell-to-cell communication, in the form of cross-linked enzymes in magnetically separable mesoporous silica. This so-called "quorum-quenching" acylase (AC) was adsorbed into spherical mesoporous silica (S-MPS) with magnetic nanoparticles (Mag-S-MPS),(More)
The odometry information used in localization can be quite erroneous when the robot follows the curved path or suffers from slippage. Thus the use of the low-cost gyroscope to compensate for an angular error is considered by many researchers. Conventional Kalman filtering methods that fuse the odometry with the gyroscope may produce infeasible solution(More)
Damages to water filtration membranes during installation and operation are known to cause detrimental loss of the product water quality. Membranes that have the ability to self-heal would recover their original rejection levels autonomously, bypassing the need for costly integrity monitoring and membrane replacement practices. Herein, we fabricated(More)
In this study, a combination of phosphorus (PP) oxoanions in a submerged plasma irradiation (SPI) system was used to enhance the removal efficiency of dyes from wastewater. The SPI system showed synergistic methylene blue removal efficiency, due to the plasma irradiation and Fenton-like oxidation. The ferrous ions released from the iron electrode in the SPI(More)